Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mind & Society ; 20(2):221-227, 2021.
Article in English | APA PsycInfo | ID: covidwho-2259117

ABSTRACT

Based on an ad hoc online survey about risk perception and preventive behaviours, we describe three chronological phases related to how people in Germany perceived the Corona pandemic between March 22 and May 10, 2020. In general, participants reported to be less concerned about their own risk than about the risk faced by others. However, a good portion of those who thought that they themselves were low risk actually wrote about their belief that they nevertheless had a responsibility to behave in ways that benefited others, even if it came at a cost to themselves. In loose reference to Immanuel Kant's notion that humans have a rational duty to act in a socially responsible manner, we interpret people's comments about other-regarding behaviour as an initiation of a Kantian tendency during the Corona pandemic. Based on these findings, we suggest that policy makers may do better in times of crisis than nudging, incentivizing, or compelling the public by law. They can perhaps accomplish more by (also) nurturing people's innate sense of the need for socially responsible action to be taken in order to meet the daunting challenges of present and future crises. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

2.
J Med Internet Res ; 24(5): e31810, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1875271

ABSTRACT

BACKGROUND: Symptom checkers are digital tools assisting laypersons in self-assessing the urgency and potential causes of their medical complaints. They are widely used but face concerns from both patients and health care professionals, especially regarding their accuracy. A 2015 landmark study substantiated these concerns using case vignettes to demonstrate that symptom checkers commonly err in their triage assessment. OBJECTIVE: This study aims to revisit the landmark index study to investigate whether and how symptom checkers' capabilities have evolved since 2015 and how they currently compare with laypersons' stand-alone triage appraisal. METHODS: In early 2020, we searched for smartphone and web-based applications providing triage advice. We evaluated these apps on the same 45 case vignettes as the index study. Using descriptive statistics, we compared our findings with those of the index study and with publicly available data on laypersons' triage capability. RESULTS: We retrieved 22 symptom checkers providing triage advice. The median triage accuracy in 2020 (55.8%, IQR 15.1%) was close to that in 2015 (59.1%, IQR 15.5%). The apps in 2020 were less risk averse (odds 1.11:1, the ratio of overtriage errors to undertriage errors) than those in 2015 (odds 2.82:1), missing >40% of emergencies. Few apps outperformed laypersons in either deciding whether emergency care was required or whether self-care was sufficient. No apps outperformed the laypersons on both decisions. CONCLUSIONS: Triage performance of symptom checkers has, on average, not improved over the course of 5 years. It decreased in 2 use cases (advice on when emergency care is required and when no health care is needed for the moment). However, triage capability varies widely within the sample of symptom checkers. Whether it is beneficial to seek advice from symptom checkers depends on the app chosen and on the specific question to be answered. Future research should develop resources (eg, case vignette repositories) to audit the capabilities of symptom checkers continuously and independently and provide guidance on when and to whom they should be recommended.


Subject(s)
Emergency Medical Services , Mobile Applications , Data Collection , Follow-Up Studies , Humans , Self Care , Triage
3.
JMIR Public Health Surveill ; 8(4): e33733, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1793158

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, medical laypersons with symptoms indicative of a COVID-19 infection commonly sought guidance on whether and where to find medical care. Numerous web-based decision support tools (DSTs) have been developed, both by public and commercial stakeholders, to assist their decision making. Though most of the DSTs' underlying algorithms are similar and simple decision trees, their mode of presentation differs: some DSTs present a static flowchart, while others are designed as a conversational agent, guiding the user through the decision tree's nodes step-by-step in an interactive manner. OBJECTIVE: This study aims to investigate whether interactive DSTs provide greater decision support than noninteractive (ie, static) flowcharts. METHODS: We developed mock interfaces for 2 DSTs (1 static, 1 interactive), mimicking patient-facing, freely available DSTs for COVID-19-related self-assessment. Their underlying algorithm was identical and based on the Centers for Disease Control and Prevention's guidelines. We recruited adult US residents online in November 2020. Participants appraised the appropriate social and care-seeking behavior for 7 fictitious descriptions of patients (case vignettes). Participants in the experimental groups received either the static or the interactive mock DST as support, while the control group appraised the case vignettes unsupported. We determined participants' accuracy, decision certainty (after deciding), and mental effort to measure the quality of decision support. Participants' ratings of the DSTs' usefulness, ease of use, trust, and future intention to use the tools served as measures to analyze differences in participants' perception of the tools. We used ANOVAs and t tests to assess statistical significance. RESULTS: Our survey yielded 196 responses. The mean number of correct assessments was higher in the intervention groups (interactive DST group: mean 11.71, SD 2.37; static DST group: mean 11.45, SD 2.48) than in the control group (mean 10.17, SD 2.00). Decisional certainty was significantly higher in the experimental groups (interactive DST group: mean 80.7%, SD 14.1%; static DST group: mean 80.5%, SD 15.8%) compared to the control group (mean 65.8%, SD 20.8%). The differences in these measures proved statistically significant in t tests comparing each intervention group with the control group (P<.001 for all 4 t tests). ANOVA detected no significant differences regarding mental effort between the 3 study groups. Differences between the 2 intervention groups were of small effect sizes and nonsignificant for all 3 measures of the quality of decision support and most measures of participants' perception of the DSTs. CONCLUSIONS: When the decision space is limited, as is the case in common COVID-19 self-assessment DSTs, static flowcharts might prove as beneficial in enhancing decision quality as interactive tools. Given that static flowcharts reveal the underlying decision algorithm more transparently and require less effort to develop, they might prove more efficient in providing guidance to the public. Further research should validate our findings on different use cases, elaborate on the trade-off between transparency and convenience in DSTs, and investigate whether subgroups of users benefit more with 1 type of user interface than the other. TRIAL REGISTRATION: Deutsches Register Klinischer Studien DRKS00028136; https://tinyurl.com/4bcfausx (retrospectively registered).


Subject(s)
COVID-19 , Adult , Humans , Intention , Pandemics , Surveys and Questionnaires
4.
J Med Internet Res ; 23(5): e26494, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1247759

ABSTRACT

BACKGROUND: As one of the most essential technical components of the intensive care unit (ICU), continuous monitoring of patients' vital parameters has significantly improved patient safety by alerting staff through an alarm when a parameter deviates from the normal range. However, the vast number of alarms regularly overwhelms staff and may induce alarm fatigue, a condition recently exacerbated by COVID-19 and potentially endangering patients. OBJECTIVE: This study focused on providing a complete and repeatable analysis of the alarm data of an ICU's patient monitoring system. We aimed to develop do-it-yourself (DIY) instructions for technically versed ICU staff to analyze their monitoring data themselves, which is an essential element for developing efficient and effective alarm optimization strategies. METHODS: This observational study was conducted using alarm log data extracted from the patient monitoring system of a 21-bed surgical ICU in 2019. DIY instructions were iteratively developed in informal interdisciplinary team meetings. The data analysis was grounded in a framework consisting of 5 dimensions, each with specific metrics: alarm load (eg, alarms per bed per day, alarm flood conditions, alarm per device and per criticality), avoidable alarms, (eg, the number of technical alarms), responsiveness and alarm handling (eg alarm duration), sensing (eg, usage of the alarm pause function), and exposure (eg, alarms per room type). Results were visualized using the R package ggplot2 to provide detailed insights into the ICU's alarm situation. RESULTS: We developed 6 DIY instructions that should be followed iteratively step by step. Alarm load metrics should be (re)defined before alarm log data are collected and analyzed. Intuitive visualizations of the alarm metrics should be created next and presented to staff in order to help identify patterns in the alarm data for designing and implementing effective alarm management interventions. We provide the script we used for the data preparation and an R-Markdown file to create comprehensive alarm reports. The alarm load in the respective ICU was quantified by 152.5 (SD 42.2) alarms per bed per day on average and alarm flood conditions with, on average, 69.55 (SD 31.12) per day that both occurred mostly in the morning shifts. Most alarms were issued by the ventilator, invasive blood pressure device, and electrocardiogram (ie, high and low blood pressure, high respiratory rate, low heart rate). The exposure to alarms per bed per day was higher in single rooms (26%, mean 172.9/137.2 alarms per day per bed). CONCLUSIONS: Analyzing ICU alarm log data provides valuable insights into the current alarm situation. Our results call for alarm management interventions that effectively reduce the number of alarms in order to ensure patient safety and ICU staff's work satisfaction. We hope our DIY instructions encourage others to follow suit in analyzing and publishing their ICU alarm data.


Subject(s)
COVID-19/diagnosis , COVID-19/physiopathology , Clinical Alarms/statistics & numerical data , Intensive Care Units , Monitoring, Physiologic/methods , Personnel, Hospital/education , Humans , Monitoring, Physiologic/instrumentation , Patient Safety , Programming Languages
SELECTION OF CITATIONS
SEARCH DETAIL